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A SEMI-EMPIRICAL DERIVATION OF FRICTION, HEAT-TRANSFER, AND
MASS-TRANSFER COEFFICIENTS FOR THE CONSTANT PROPERTY
TURBULENT BOUNDARY LAYER ON A FLAT PLATE

by

Neal Tetervin

ABSTRACT: The friction coefficient and velocity profile are
calculated from the relation between the shear, the mum of the
molecular and eddy viscosity, and the velocity gradient. The
non-dimensional shear distribution is assumed to be fixed. The
eddy viscosity acrosas the boundary layer is obtained by joining
a distribution for the wall region to one for the outer region.
By use of the shear and eddy viscosity distributions the veloc-
ity profile is calculated from the wall to the outer edge of the
boundary layer for all Reynolds numbers without using the con-
cept of laminar sublayer, transition region, logarithmic region,
etc.

The heat and mass transfer coefficlilents and the temperature and
concentration profiles are calculated by a similar method.
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A Semi-Empirical Derivation of Friction, Heat Transfer, and Mass-
Transfer Coefficients for the Comstant Property Turbulent
Boundary Layer on a Flat Plate

This report presents the results of a theoretical investigation
of the constant property turbulent boundary layer on a flat
plate. A new method of analysis that obtains many of the results
previously obtained by a number of different approaches is
introduced. The new method also yields some results not previ-
ously available from theoretical analyses,
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T temperature
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ts T

te S¢ (Ta=Tw) {'S_f—

u velocity component in x direction
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v velocity component in y direction
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SUMMARY

A new method for the calculation of mean flow quantities in
a constant property turbulent boundary layer on a flat plate is
developed. In this method the friction coefficient and velocity
profile are calculated from the relation between the shear, the
sum of the molecular and eddy viscosity, and the velocity gradient.
The shear distribution, experimentally obtained by previous
investigators, is assumed to be fixed. The eddy viscosity is
obtained by joining a distribution for the wall region to one
for the outer region of the boundary layer. Both distributions
wvere calculated by previous investigators from measured flow
quantities. By use of the shear and eddy viscosity distributions
the friction coefficient is calculated and agrees well with
accepted values over the entire range of Reynolds number. For
large Reynolds numbers the logarithmic friction formula is
obtained.

The velocity profile is calculated by the same method as
the friction coefficient. The entire profile, from the wall to
the outer edge, is calculated without using the concept of
laminar sublayer, transition region, logarithmic region,,etc.
The calculated velocity profile chaunges gradually from the
laminar type at small Reynolds numbers to the turbulent type at
larger Reynolds numbers. For sufficiently large Reynolds numbers
the logarithmic formula is obtained for one part of the velocity
profile and the velocity defect formula for another part.

The heat-transfer coefficient and non-dimensional tempera-
ture profile for small temperature differences are calculated
by the same method as the friction coefficient and velocity
profile. In these calculations the non-dimensional heat-transfer
distribution,which must be known, is assumed to be the same as the
non-dimensional shear distribution. 1In addition to the Prandtl
number, the ratio of the eddy thermal diffusivity to the eddy
kinematic viscosity also appears. This ratio is calculated from
experimental data obtained by previous investigators., The calcu-
lated ratio of local Stanton number to half the local friction
coefficient is foxnd to vary from about 1.22 at a Reynolds number
of about 3.5 x 10®, based on the distance to the leading edge,
to about 1.09 at a Reynolds number of 2.2 x 109, The calculated
non=dimensional temperature profiles differ slightly from the
velocity profiles.

Turbulent flow over a surface on which condensation or
evaporation is occurring is treated by assuming that the rate of
condensation or evaporation is small, that the Schmidt number is
equal to the Prandtl number, and that the eddy diffusivity is
egqual to the eddy thermal diffusivity. The mass-transfer coef-
ficient is then equal to the heat-transfer coefficient, and the
non-dimensional concentration profile is the same as the non-

dimensional temperature profile.
1
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INTRODUCTION

The problem of calculating the friction coefficient and
velocity distribution for a constant property turbulent boundary
layer is an old one. In a rigorous sense the problem is
unsolved and will remain s0o until shear turbulence 1is understood
better. At present the friction coefficient is usually calculated
from a formula designed to fit either experimental data or the
logarithmic formula (refs. (1) and (2)), The logarithmic
formula is theoretically derived but contains two constants that
must be found from experiment., This formula can be derived in a
number of ways, for example, by use of Prandtl's or von Karman's
relations for the eddy viscosity or by Millikan's method of
overlap (ref. (1)).

The avelyses that lead to a logarithmic friction formula
also result in the logarithmic velocity profile. This velocity
distribution agrees reasonably well with experiment over a portion
of the boundary layer from near the edge of the laminar sublayer
to about one-fifth of the boundary layer thickness from the wall,
The region very close to the wall requires a separate treatment
that gives the result that in this region the velocity is
directly proportional to the distance from the wall., The
velocity profile must vary continuously from the linear to the
logarithmic, but the variation is not obtainable from either the
procedure that gives the linear profile or from that which
yields the logarithmic profile. A number of investigators have
treated this problem (ref. (1l)). To calculate the velocity
distribution thus requires that the boundary layer be divided
into a number of regions, This is true even if Cole's correla~
tion of velocity profiles (ref. (1)) is used. A complete
review and detailed discussion of the present knowledge of the
constant property turbulent boundary layer on a flat plate is
given in reference (l).

In the present analysis the velocity profile and friction
coefficient are obtained from the relation between the shear,
the sum of the molecular and eddy viscosity, and the velocity
gradient. The shear distribution, experimentally obtained by
previous investigators, 1is assumed to be fixed. The eddy
viscosity is obtained by joining a distribution for the wall
region to one for the outer region of the boundary layer. Both
distributions were calculated by previous investigators from
measured flow quantities., By use of the shear and eddy viscosity
distributions the friction coefficient is calculated and agrees
well with accepted values over the entire range of Reynolds
number, For the limiting case of zero Reynolds number, the
friction coefficient becomes almost equal to the exact Blasius
value for laminar flow (ref., (2)). At the other extreme, very
large Reynolds number, the analytic expression for the logarithmic
friction formula is obtained. -

2
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The velocity profile is calculated by the same method as
the friction coefficient. Unlike the usual procedure, the entire
profile from the wall to the outer edge is calculated without
splitting the boundary layer in a more or less arbitrary manner
into laminar sublayer, transition region, logarithmic region,
etc. The calculated velocity profile changes gradually from
almost the exact Blasius laminar profile in the limit of zero
Reynolds number to the turbulent type at larger Reynolds numbers,

The heat-transfer coefficient and temperature profile for
small temperature differences are calculated in a manner similar
to that for the friction coefficient and velocity profile., That
is, instead of the relation between the local shear, the total
viscosity, and the velocity gradient, there is used the relation
between the locel heat transfer, the sum of the molecular and
eddy conductivity, and the temperature gradient. The information
required to calculate the eddy conductivity is obtained from the
experimental data of reference (3). The non-dimensional heat-
transfer distribution across the boundary layer is assumed to
be the same as the non-dimensional shear distribution,

For small concentration of a foreign gas, for Schmidt
number equal to Prandtl number, for eddy diffusivity equal to
the eddy thermal diffusivity, and for the non-dimensional mass-
transfer distribution across the boundary layer equal to the
non-~dimensional heat-transfer distribution, the concentration
profile and mass~-transfer coefficient can be obtained directly
from the temperature profile and heat-transfer coefficient.

ANALYSIS
Friction Coefficient and Velocity Profile

In laminar boundary layer flow the shear stress is related
to the velocity gradient by the relation

T=m2E (1)

For turbulent flow, it is assumed that an eddy kinematic
viscosity ey can be found such that

T=(n +Pm 5?‘—;— (2)

Equation (2) can be written =as

Em
T _ /4<j+ V,) Ue %i
- y
T, 'qu 5 3-§—
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or, for constant property flow, as

T g
, (1'+ ¥ ) FE s O

w

From (3) it follows that

g
.
C [ T / 75di‘3 Tl |
Ce Re_ | dq = | < |
3 EFJ '|+~55’," 1 J e 1
o o
Therefore |
[ — T OI'L
[ _ | + Em (5)
3:723; - v
T Em
To evaluate the integral in (5), %, and 3, must be known

from the wall to the outer edge of the boundary layer. The
ratio 4%— , shown in figure (1), was obtained from figure 7-13

of refe;%nce (1); figure 7-13 gives the ratio of the measured
turbulence shg?r stress to the wall shear stress, Near n = O,
the curve of was drawn slightly abhove the curve of figure

7-13 of reference (1) in order to agree more closely with the
experimental points shown in that figure and also to allow for
the viscous shear and to give the slope its required value of
zero at the wall, In figure 1 is also shown the ratio X. cal-

culated by Fedisevsky's method (ref. (4)). In this methdd the
ratio %: is expressed as a fourth degree polynomial in n and

the coefficients, which depend on the value of — T and 1its

derivatives at n= 0 and at n = 1, are evaluated by use of the
boundary layer eguation of motion. Although Fediaevsky's
distribution of . 1s not very far from the measured one, the

measured one was Used in the present analysis, For a flat plate,
Fedisevsky's method makes L. a function of = alone; the same

assumption is made in this Ehalysis.

€
The ratio 2? is obtained from reference (l). The discus-

sion on page 526 and the data of figure 7-41 of reference (1)
indicate that very near the wall

Py

>
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or

i'::j = ’Cl <‘L%’j‘> (6)

Relation (6) is universal under the assumption that the portion
of the velocity boundary layer very near the wall can be com-
pletely described by the quantities u, ey, p, B, Ty, and y.

Further from the wall, the discussion on page 493 and the
data in figure 7-17 of reference (1) indicate that

€
= £.(n) 3

Because this relation does not contain the viscosity, it
probably applies only at large Reynolds numbers. At small
Reynolds numbers, €~ is probably a function of Rey in addition
to n, u-x

Because (6) applies only near the wall and (7) applies
only further out, (5) is written as

'7.1 T 'f T
[ Tur d [ (8)
= + d
c €. 2 + 6m 1
'

where n; is the smallest value of n for which (7) applies. For
n<mn, £~ depends on y, instead of on n, Consequently, the
>

first integral in (8) is written as

ol 2
I F, \ Re y
+
7?9{_ | + Y.,
°o
U8 &
where ’/?e£___._ _;:___ = /=t ‘RCS‘
— Yy ;
and j_',_ = T = rz /ee{_ (9)
and \_'l+,l = ’l,’f\j’e‘
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T Yo T
The notation T (ﬁ‘) peoints out that -F, 1is assumed to be a

function of rl(= Y’\ near the wall as well as further out.
73

T Re
Equation (8) then becomes
(B E:
= [ Do | + Re Tw d
44
Et I+Y*‘F| Y+ ' j | + ‘R'-(-{_L 'L Gl
(o)

(f

The function f9(n) was obtained directly from the faired
curve in figure 7-17 of reference (1) and is shown in figure 2,
The function f31(y4+) was obtained from figures 7-16 and 7-41 of
reference (1) and is shown in figure 3. The points are the data
points of figures 7-16 and 7-41 of reference (1). For 15 < y, < 52,
the curve of f] in figure 3 is a slightly adjustsd version of the
curve of figure 7-16 of reference (l). The data of reference (1)
do not indicate an upper limit to the rising portion of f;. 1In
the present analysis, however, f; 1is postulated to have the
constant value .393 for a range of y;, > 52 if Res is sufficiently
large. The function f; 1s postulated to have this constant
portion because if, at a sufficiently large value of Res, f9 is
plotted against y, by use of (9) and the identity

€m _ [Em ) 1
the portion of fo for n less than about .06 in figure 2 with a
slope of .393 lies on the line Gﬁﬂhy = ,393 in figure 3. Therefore,
ém/ﬁmYWould be double valued for y, > 52 unless fj either did
not extend beyond y;, = 52 or were equal to fg beyond y4; = 52. By
taking £3 = .,393 for y, > 52, it is not necessary to limit the
range of f1 by the fixed number 52, Moreover, making f] extend
beyond y, = 52 necessitates that f2 = Kn in the region of the

boundary layer in which fj and f5 apply simultaneously. Thus,
from (6) it follows that

S VL‘F,(‘A-)

Ue ¥

Therefore, where (6) and (7) are both valid it is necessary that

f)=K




NOLTR 63-77

™ £L)=Kn (k=393 (12)

At high Reynolds numbers the upper limit of fj is thus postulated
to be the largest value of y, for which f; = K, that is, at
about .06 Rer.

The lower limit mn3; for fg is found by first calculatingi€7
from fz(n) by (11) and then, by use of (9), plotting these
values of d? together with f3 as shown in figure 4. The

extension of fp down to y; = O is merely for the purpose of
calculating n3. When fj and f2 intersect at y, < 52, the value
of y, at the intersection is y, 3. Equation (9) then gives n].
When there is no intersection at ¥+ < 52, y4,1 is 52 and =} is
%%. . The curve of f2 for Ref = 2960 in figure 4 is an example

of a Reynolds number that is so large that fj} and f2 do not
intersect for y; < 52. Therefore, 52 is used for y; 1. The
curve for Rerf = 200 shows the behavior at a low Reynolds number.
Here, f; and f2 intersect at y; < 52, When the Reynolds numbers
are so low that Y+,1 < 52, then ¥+,1 depends on Rer.

By use of figures 1, 2, and 3, and this method for finding
Y+ 1 and n1, the value of Cf/2 was calculated from (10) for six
values of Reg. The values of ¥+,1 and =1 and the corresponding
values of f1 and f2 for the three values of Regs for which y4 1
is less than 52 are given in Table I. 1In Tab II are listed
the values of Cf/2 and Res. The value of Cs/2 for Reg = 2960,
namely .0373, is almost the same as the value .,037 given in
reference (1). In figure 5 the calculated values of Cy/2 are
compared with those obtained by use of the logarithmic velocity
profile and given in Table 21.1 of reference (2). The agreement
is good over the entire range of Rey. It is noted, however,
that because (7) does not contain the viscosity, it is probably
valid only at large Reynolds numbers. At small Reynolds numbers
the function f, is probably somewhat different from that shown
in figure 2 wi%h the result that C¢/2 is also probably different
from that calculated.

The velocity profile is obtained by solving equation (3)
for 9& and integrating between O and n. Thus,

21 1~
Cs - Tw
o W= ) = d (13)
¢ 2 E i*‘ ﬁ; 1_
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For the same reason that (5) was written as (8), (13) is written

as
;f
4) J (14)
for y, < v+,1, and as
Y £
C
d + =t Re ’-’1 (15)

t
for n > n1. Tne velocity profiles, tb(n) are tabulated in Table
III and shown in figure 6 for the six values of Rer for which
Cf/2 was calculated, Because there is a unique relation between
f and Cg/2, it follows that the velocity profile is uniquely
ated to Cf/2. Included in Table III and figure 6 is the
profile for laminar flow, This profile was calculated by using
the same :%. distribution as for turbulent flow, that shown in

figure 1, and by putting equal to zero in equation (5) to get

——‘Re __[f-f a‘ﬂ— | &26 (16)

This result was then used in (13) to get

L. (%
¢ = %‘Rer —:::d'l = 1.826/7:&1 (17)
[] a

The velocity profiles in figure 6 show a gradual change from the
laminar to the turbulent type as Res increases.

Note that boih the friction coeffi~ient and velocity profile
become exactly those for laminar flow when the Reynolds number
becomes zero., Thus, €w in (5) and (13) can be written as

f_r_)d—?;_'Res_ ¥ . Then, as Reys decreases to zero %“ also
Ue )V .
decreases to zero because the friction Reynolds number, va/z Reg,
is zero for Reg equal to zero, Equations (5) and (13) then
become (16) ang (17), respectively, the equations for laminar
flow.

In £igure 7 all the velocity profiles of figure 6 except
the laminar one are shown in the form u; against y,. The relation

between u, and $ is
Uy = |, [T (18)
Z

8
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and the relation between y, and n is given by (9). Each velocity
profile has a straight line portion that lies on the single line
which is fitted by the equation

Uy= 254 ny, + 35.89

Each velocity profile leaves this line at a sufficiently large
value of u;. Calculations indicate that this occurs when cb
exceeds about .75.

The profile for Reg = 25 lies markedly below all the others.
The reason is that 25 is so small a value of Rer that large
values of m occur for small values of y, (see eq. (9)). Conse-
quently, ;E_ , which is assumed to depend on = alone, is smaller

over the r;Bge of integration in (15) than it is for larger values
of Regf. For example, at y, = 12.2, which is ¥+,1 in this case,
n is large enough for T to equal .600, a value appreciably less

than unity. As a resulf’u+ is small over the entire boundary
layer and its maximum value is only 9.31.

In figure 7 are also shown Klebanoff's data for Regy = 2960
from figure 21 of reference (5). Klebanoff's data differ
slightly from the curve of the present analysis for values of
y4+ between about 20 and 120. If the curve of f] of reference
(1) had been used without refairing it, better agreement would
have been obtained with Klebanoff's data.

In figure 3 are shown the computed velocity profiles in the
formUe—W against n. Also shown is the curve from figure 7-4 of

referenge (1); this curve is a mean through experimental data.
There is fair agreement between the calculated velocity profiles
and this mean curve for the three largest values of Ref but not
for the three smallest values. The three smallest Reynolds
numbers are probably much smaller than those for which data were
used to construct the curve of figure 7-4 of reference (1). The
comparisons with experiment in figures 7 and 3 indicate that a
calculated profile probably differs slightly from an experimental
one at the same friction Reynolds number.

6
x From the computed velocity profiles the quantities - and

_%- were calculated numerically from their definitions, namely,
|
e = —
= fih(‘ é)C11

and ° i

s* ] ° v 3%/ 3
The ratio — was calculated from B 63;)?__)

2] e (-}
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These quantities are given in Table 1V, By use of %% , the
value of Rep, a more convenient quantity than Reg or Res, was
calculated for each value of Rer for which Cg/2 was computed.
These values of Req are given in Table IV and the dependence of

Cg¢/2 on Repn is shown in figure 9.

When C¢/2 is known as a function of Reg, the dependence of
Ce/2 and of Cr on Rey can be calculated. The procedure is to
use the boundary layer momentum equation in the form

C”?ee = S
d Re x 2 (19)
which, upon integration, gives
Teo
Re, = o_é%d?ee (e=0 & x=0) (20)
The relation =
_— cé
Ce=2=x, (21)

is also used,

To calculate Reyx from (20), Cgy/2 must be known as a function
of Ren for small values of Rep, In the present analysis the
turbulent boundary layer gradually becomes laminar as Reg
approaches zero so that it is unnecessary to assume either a
turbulent boundary layer at the leading edge or a transition
position. In order to use (20), C¢/2 was extrapolated from its
value at Rep equal to 27.7 down to zero by fitting the equation

Ce o Se
F 1?c:

to the values of Cg¢/2 at Reg = 27.7 and 191 (see Tables II and
IV)., It was found that kg = ,0789 and ng = .5785, For Regy = 100
equation (20) then gives Rex = 11,530 and equation (21) gives

Cr = .01735. Although kg and ng should apoproach their laminar
values, namely, .2205 and 1, instead of remaining fixed as Regp
becomes zero, it can be shown that at Reg = 100 the error in Rey
caused by keeping ko and n, fixed is no farger than 2 percent,
The percentage error in Rex and Cp decreases as Ren increases.
For values of Reg larger than 100, equation (20) was integrated
numerically by use of figure 9. 1In figure 10 is shown the
calculated dependence of Cp on Rey; also shown 1s the dependence
of Cy on Re, predicted by the Prandtl-Schlichting and Schultz-
Grunow formulas (ref. (2)). The agreement is good.

10
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In figure 11 is shown the connection between Reg and Rex
calculated by use of (20)., Figure 11 is given because it
enables quantities known as a function of Reg to be easily
obtained as a function of Reyx and vice versa, Thus, from this
figure and figure 9 the dependence of C¢/2 on Rex can be found,

Heat-Transfer Coefficient and Temperature Profile

The heat-transfer coefficient and temperature profile are
calculated in the same way as the friction coefficient and
velocity profile. The expression for the heat transfer by
conduction in a direction normal to the wall in a laminar flow
is

2T
C{—-—K*s;}- (22)

It is assumed that an eddy thermal diffusivity exists that allows
the heat transfer in a turbulent flow to be written as

1)
ﬁ = — (K ""(’ CP e\“\ ‘—39- (23)
Equation (23) can be written as

9= -k [+EER]T o

After defining a non-dimensional temperature t by

Tt —=Tw
= Te —Tw )

introducing a temperature boundary-layer thickness 61, and
dividing by gq,, (24) becomes

_K_@e_‘l\rl[_+ )éA)p]
(25)
‘{ 51w ( M
where »r -_%L . After introduction of the Stanton number
T
S.=

- 8w
PUep (Te =Tw)

equation (25) becomes

- StRe = PrL Gr‘)( Gk =
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From (26) it follows that
| |
8 '
Tw 6{11'

e[
T e

T = (27)

or

i
\ _& e
SgResPr ¥ é |+ (5 )? (28)

Before (28) can be used to calculate S the ratio‘%; must
be known as a function of np. Unlike ;; , ho measurcments of

%_ on s plate could be found. Consequently, to obtain an
w
approximate distribution of %; , the Fediaevsky method for

getting %; was used to investigate the dependence of 1; on "y,
This method gave a reasonable approximation to ¥L (see fig. 1).
Two conditions to evaluate the fourth degree polynomial of
Fediasevsky's method are

-%~'= { at v =

—2—- Oa‘*‘Y -3

Also, from the energy equation,

and

€ DE -219
€u> '*fway ==2y (29)

E
and the conditions, vw = 0 andé?;&wp 0, it follows that both

y j—) and '3 (1?—) at Y=o

Moreover, for(%e) = 0, the conditlon at y = 67 is
xve 2 (&h)=0
Y a7

These five conditions on §_ are exactly the same as on Tw o
Consequently, if %: and 4klare approximated by fourth degree
w
polynomials C is exactly the same function of =y as-;t is of
n, Therefore, the relation between {%: 32ﬁ »r is assumed to be
the same as the experimental one between T snd m. Actually,
however, depends slightly on the Prandtl number (see fig.
7-55, ref.”(1)). 13
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In figure 11 is shown the connection between Reg and Rex
calculated by use of (20), Figure 11 is given because it
enables quantities known as a function of Reqg to be easily
obtained as a function of Rex and vice versa. Thus, from this
figure and figure 9 the dependence of C¢/2 on Rex can be found.

Heat-Transfer Coefficient and Temperature Profile

The heat-transfer coefficient and temperature protile are
calculated in the same way as the friction coefficient and
velocity profile. The expression for the heat transfer by
conduction in a direction normal to the wall in a laminar flow
is

27
q——Kay (22)

It is assumed that an eddy thermal diffusivity exists that allows
the heat transfer in a turbulent flow to be written as

9=~ (w+p ey, % (23)

Equation (23) can be written as

9= -k [+EER]T e

After defining a non-dimensional temperature t by
—Tw

t = =
Te —Tw

introducing a temperature boundary-layer thickness 6, and
dividing by q,, (24) becomes

_ﬁ_:__*’;_@:*’;f—_r_‘*_’lh+— %%}P&% (25)

)

?w XT q\/\/
where T -;Z. « After introduction of the Stanton number
3r
— w
\P“ccp(Te." w)

equation (25) becomes

5
%\; - S,_.Relg(fa_l)n L’ +<%"‘)(%)P_r:) %;{T (26)
11
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From (26) it follows that

G % /5 =

or

S Res P e A I+<ém)( )P" (28)

Before (28) can be used to calculate S; the ratio'%; must
be known as a function of np. Unlike ;; , no measurements of
wi

%_ on s plate could be found. Consequently, to obtain an
w 3
approximate distribution of =37, , the Fediaevsky method for

getting %& was used to investigate the dependence of 4; on nr.

This method gave a reasonable approximation to %; (see fig. 1).

Two conditions to evaluate the fourth degree polynomial of
Fediaevsky's method igi
= + \, ==
T | 8 / )
and

—g: =0 at y::g}

Also, from the energy equation,
D€ DE __-:)3

Pusx TV Sy 5y (29)

E
and the conditions, vw = 0 andéi ) = 0, it follows that both

y -i—) and 2 (14‘) at Y=o

Moreover, for E) = 0, the condttion at y = &7 1is
x/e

P —
,—y(aw)-—o -
These five conditions on §_7 are exactly the same as on "7 .
Consequently, if §= and _%bare approximated by fourth degree
w
polynomials e is exactly the same function of w»p as =X is of

Tw
n. Therefore, the relation between %&- and »p is assumed to he

=
the same as the experimental one between T, and n. Actually,
however, {} depends slightly on the Prandtl number (see fig.
7-55, ref."(1)). 12
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The Prandtl number also affects the ratio <X in equation
(23). Thus, for laminar flow over a flat plate

§_7 __’P,g (p. 323 refa)

For Pr = .,738, the value used in the present analysis, this
relation gives 1.106 for _%i . For turbulent flow 31 is

orf$4

—_—

probably smaller and so, as an allowable approximation, is
taken as unity. Equation (23) then becomes

9
\ = 2 | (30)
- ém\/€E
S | HEE )
For reasons given in the section, '"Friction Coefficient and
Velocity Profiles,"” (30) is written as {

+)2

l _ | _g— T
S(Restr "Reg ||+ 22V AP et | Tve o R, T

The values y4 2 and mg2 are permitted to differ from y, 1 and =1.

A’l (31)

To find the ratio of éhe eddy thermal diffusivity to the
eddy kinematic viscosity,-zh , the pipe flow data of reference
L0

(3) were used. First, the values °fcur‘ given in reference (3)

for five Reynolds numbers at each of twelve values of y/r were
averaged. This was allowable because there was no consistent
effect of Reynolds number on ue~ at the twelve stations. A

smooth curve of Ef; against y/r was then drawn through these

average values located at the twelve values of y/r. Then a
curve of-Jn for pipe flow was obtained by first averaging

Laufer's and Nunner's data given in figure 7-39 of reference (1)
at each of 3 values of y/r and then drawing a smooth curve
through the average values. Laufer's and Nunner's data are the
same from the wall to the position of the maximum in éf} but

Laufer's data are slightly higher beyond this point. Although
Res is estimatgd to be about 6.3 x 103 for Laufer's data and
about 6.6 x 104 for Nunner's data, a ratio of about 9.5, it is
not certain that this is the reason for the difference. At
each value of y/é or y/r, the ratio (%mk) ( ...2 was then

o

calculated with the help of figure 2. This rat was calculated
because the eddy kinematic viscosity approaches zero at the
outer edge of a boundary laye w reas it does not at the
center of a pipe. The ratio /7 2 was plotted against

y/é and a smooth curve drawn throug t e plotted values. The

assumption was then made that a change in flow from pipe to

13




NOLTR 63-77

plate has the same effect on e, as it does on ep. Therefore,shr
was obtained by multiplying the ordinates of the curve for £n °
obtained from the pipe flow data of reference (3) by(ﬁ:»/ciur

éh [Ty Cu_:’.')
The variation of ¢ with y/6 for plate flow was then calculated

™~

and is shown in figure 12, For n .06,%%& is taken as unity.

This means thatfé% is assumed to be fg(n) for n < .06 with the
result that g

€
o =3930 (n £.06)

€n
Consequently, u:? as a function of y, has a horizontal portion

Em =y =393

Just as Iy has,

Near the wall the proper variable is y; instead of n. For

this region the data of references (6) and (7) for flow of eair
in a channel were used to obtain the connection between &? and

Y+. The values otif§ and y; were calculated by using p = 22

x 10-4 slugs per cubic foot and v = 1.8 x 10-4 square feet per
second, The results are shown in figure 13 for the entire
range of yI from the wall to the center line of the channel.

-]

Where é&; a function of y, the data fall almost on f], except
perhaps between about 3 and 17 where the é? data lie somewhat

below f3. The agreement between these é} data and f1 is

3
believed to be sufficiently close to allow f; to represent aﬁ;
as well as %%% . This means that.%b = 1 near the wall

. ™

vhere the distance variable is y, instead of n,
The value of y, o and the corresponding value of n2 in (31)

are calculated in the same way as y, 1 and nij. To do this,
figures 2 and 12 are used to calculate Cﬁm.)(Gh ) as a
gm

Usy
function of y, by use of (9) and (11). The value of y, at which
Em )( Gh} equals f) is then found. Below this value of
Uwy Ern én

¥+, called y+,2,'u:9 is represented by f); above y; 2 figures
2 and 12 are used to get 5?§)<'%E) as a function of n, In

Table V are given the values of Y+, and n2 for the three values
of Rey for which y, 5 is less than %2.

The data in figure 13 indicate that the assumption that
there is a quantity y ,1 or y, o seems to be correct. The method
for the calculation of ¥+,1 or'y+ 2 also appesrs correct. That
is, the data show that below the intersection of % £.(7) with

L og]

14
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€n . . LT
fl(y+),733 depends on y,. Above the intersection, Wy depends
on y, and on Reg. That is, above the intersection the variable
is €n and it depends on n, As expected, there is a smooth

Ua&”
transition between fj and -ZE fo ratlier than the corner that

results in the present method for finding y4 1 and Y, 9. For

= 150 and 264, the experimental data leave f1 cloée to the

{culatpd value of V4,2 For Regy = 701, there is an appreciable

difference. Above y, 5 the calculated curves for all three
values of Res are below the experimental data. Because the
calculated curves are for flow over a plate whereas the points
are for a channel, some difference is to be expected. Thus,
although the value of éé? for a plate approacheg zero at the
outer edge of the boundary layer, the va. .e * h  for a chan-
nel is not zero at the center line. This i. .y the dashed
curves in figure 13 go through TEL =0 at y;, = e, but the

points do not, For y, 1 < y4 < Ref, but not close to y; = Res,

only a small part of the difference between the curves and the

data points can he removed by multiplying ‘27 for plate flow by
W

the reciprocal of the ratio (uvﬁl/z that was used to

convert the pipe flow (ibr)datp of reference (3) to plate flow

gh? data. The reason for the remaining difference is not clear
{ 4

at present,

By use of equation (31), the function f;, figures 2 and 12,
and the method for finding y4+, 62, the local Stanton number, St,
was calculated for the five values of Ref listed in Table I,

The results are given in Table VI and also shown in figure 9 as
a function of Regq. Also given in Table VI and figure 14 are the
values of the ratio 235t .
23Sy £
The ratio e “as calculated by noting that from the

definition of ST and of St it follows that

‘Rex
S+ = ' |'K o (32)
T Rex | 51.- Kex
or .'(_ae
Sy o=, |5 SR 4,

i "Rex _," Ve dReg (33)

15
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Upon the use of (19) and (21), (33) becomes

Keo
23S - 2 Se
= I = R & d?ee (34)
F €e Jo F
For 0 < Rep < 100, the ratio%ﬁ was expressed in an analytic
form by assuming that £
K
Se=—w (35)
Reg

The constants K]} and nj were determined from the values of S¢
for Reg equal to 27.7 and 191 (see Table VI) and were found to
equal ,109 and ,601, respectively. When the results for k, and
n, are used, the expression for &g_g for Repy < 100 becomes

25¢ — _L38!' (36)

Equation (36) was used with (34) to obtain 35‘%' - 1.274 for

3
Reg = 100. For values of Rey larger than 100, %—FI was calcu-
lated by numerical integration by use of (34) and figure (14),
The result is shown in figure (14).

3t
The temperature profiles were calculated by putting % = 1,
solving (26) for f‘b , and integrating between 0 and =m., Thus,

1 n LS
+ = S.E'RQUP»'ZI_‘_C_EE;(% Pe Arl (37)

or

"
_ SePr + ';;.', '
't = dy+ +St'Re$?r~ <7/l+—§£-‘ -&'RQ‘F'Pr AVL (38)

T& LI+HLAT

The temperature profiles calculated by use of (38) are shown in
figure 15 and tsbulated in Table VII, Also shown is the tempera-
ture profile for laminar flow. This profile is obtained by
1etting(_5;':.) = 0and G = X in (37). The result is

Qw

t = Sy RegPr [ iz dn

or, after using (17)

. 25:7P (39)
10 7 ¢

16
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From (30) with(ﬁ—) ( )andé~—) = 0, and from (16) it follows
that Tw
ZSt ?r l

Therefore, from (39) t = ¢’. That is, the present method
predicts that for laminar flow the velocity and temperature
profiles are the same.

Mass~Transfer Coefficient and Concentration Profile

The mass—transfer coefficient and concentration profile
are calculated in the same way as the heat-transfer coefficient

and temperature profile. or a binary mixture in lsminar flow
the mass transfer by diffusion in the direction normal to the
T"

ﬁ L (40)
where the contribution of T' 3 is assumed to be negligible,
For turbulent flow it is assumed that an eddy diffusivity exists
such that

m == (‘9'1*‘6‘*) 5y (41)
After introduction of the Schmidt number ) and the quantity
€= i;“ 695u.
equation (41) becomes e W e
Sle=tiw '3 <
Em\/€d
™ == {oéB,,_[l (&) ( S] Cra (42)

In the same way as in the section concerning heat transfer, it
is assumed here that the concentration boundary layer thickness
differs from the velocity boundary layer thickness by less than
10 percent and that it is thus permissible to take the two
thicknesses equal,

When (42) is divided through by mi,w and the mass-transfer
coefficient "
- i w
Co=

C (43)
is introduced, the result is (out.(. e Ciw)
™M, _

e C ’Re;s [I - GYE )] (44)

——

From (44) 1t follows th?t -

|
Ml‘w = _'b! = .
C,..?essc £|+(5'E?d;5c d’L h‘[ml d'{ = | (45)
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or i ™
L SRl A'L (46)
TR s, LB

Information concerning my as a function of = is obtained
by noting that Miw

my

—'Tl'_w— l A+ Y=O
and =

L =0 at Y=5

Moreover, from the diffusion equation

1>Cl '>C‘ __J_:Drnl
fm—zx +€U-_—3Y = Sy (47)
it follows that
DMy -
394.=0

when the diffusion velocity is small enough for vy = O,

Ct) G,
It, in addition,G%;rw- 3 andG%;: 0, then also

L —1
and ? ‘)N e

LY !
<W) 5 =0
Because these boundary conditions are the same as those for w !
it is assumed that the non-dimensional concentration distribution
is the same as the non-dimensional heat-transfer distribution.
It is also assumed that = 1 and that S¢ = Pr, From these

assumptions it follows tﬂit
Cm=S¢
Moreover, the non-~dimensional concentration profile is then

also tﬁgtfame as the non-dimensional temperature profile. If
either - ¥ 1 or So¥ Pr, the method used to calculate the heat

transfer coefficient and temperature profile can be used to
calculate the mass—=transfer coefficient and concentration profile.

DISCUSSION
Friction Coefficient and Velocity Profile

One of the methods for obtaining the logarithmic friction
formula and velocity profile is Millikan's method of overlap.

18
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In this method it is shown that if there is a region of the
boundary layer in which
=15 (44)

= £.()

are both valid, then the Triction formula is the logarithmic one
and the velocity profile is logarithmic in the region of overlap,

and

In the present analysis the logarithmic friction formula
and velocity profile also follow from an overlap condition.
Here, however, the condition is on the eddy kinematic viscosity
instead of on velocity profile functions., Thus, to obtain a
friction formula for large Reynolds numbers equation (10) is
used., For large Reynolds numbers

Yo, = 52
and &2
L= &, -

The value of n; is thus very small. Consequently, T, 1is almost
unityﬂ?or ¥4+ < 52, Moreover, the indication from figure 1 is
that == 1is practically unity for n less than about .01, In
addition, for large enough values of Rey, equation (12) applies

for a range of = that begins at ¢ and extends outward at
least as far as .01, Equati%P (10) then becomes N
-0
dy % dv

4
_df + Re, l+-Kr1’F?¢; Re, |+ Refa ¥

f%f‘ l+'y+¥| e

For lurge Rey the quantity (f + Regfs) in the last term of (48)
is almost equal to Regf, except very close to n =1, For
example, at Res = § x 18 , Regfg = 1965 at n = ,01. It then
increases to about 34,000 at n = ,31 and decreases to zero at
n=1; at n = ,98, however, it is equal to 850, For large
Reynolds numbers the last term in (48) can be written as

< % d
- J’l +’Re4_ (""R“;. 'L

. 0|
where (1-A) is the upper limit of the range of = in which Regefo
is much larger than unity, As Ref increases, A decreases and

Re, fH"Rc. Toin

19
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becomes negligible. For large Regy the last term in (48) is then
approximately independent of Regy. Its value is 14.27, The first
term in (48) has the value 13,95. When these two numerical
values are used and the second term of (48) 1is integrated
analytically, the result is

= Z28.21 + —‘i‘ 'n(l*-olKRep)“"l‘,—{' lh (\—PSZK) (49)

=)

For large Reynolds numbers

lh (l-{-.olK’Re.{_) -~ ln Co\KReQ
Equation (49) then becomes

TS = 2.54 W Rep +6.31  (K=.393) (5,
2

Note that the logarithmic form requires only that there be a
region of the boundary layer, no matter how small, in which (12)
and L. ¥ 1 are both valid.

™

Equation (50) has the form of von Karman's friction formula

(ref, (8))., Although (50) was derived for very large Reynolds
numbers the value of Cg/2 obtained from it differs from the value
given in Table II by less than 2 percent for Resy = 2960,

By writing (50) in the form

F%fL = 2.54 |n {ggkRee'+'2194‘Y\%§ +6.31
Z

-3
and using the value of '&§ for Rey = 5 x 10% from Table 1v,
there is obtained the relation

|

The value of Cg/2 obtained from (51) differs from that in Table II
by almost 7 percent for Reg = 2960. Equation (51) has larger 5
errors than (50) at small Reynolds numbers because the ratio (-3)
depends on Reynogds number (see Table IV) and the value of(%

for Reg = 5 x 10° was used to get (51), Because formulas of the
logarithmic type are inconvenient for computation, it is usually
better either to use the curves of figures 9 or 10 or convenient
approximations.

20
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The friction coefficient was calculated for turbulent flow
over the entire range of Reynolds number by use of the one non-
dimensional shear distribution shown in figure 1. The good agree-
ment between the friction coefficient calculated by the present
method and the accepted friction coefficient (see figs. 5 and 10)
indicates that the non-dimensional shear distribution is approxi-
mately independent of Reynolds number. Moreover. when the value
of %} is calculated for the laminar velocity profile, and
substituted into (16), the result is

C¢ _ 2258
r = ——??r’—‘ (52)

€o
This expression differs from the exact one
C.
_Zi = —-——-—-"'2205 (53)
ﬁee

by less than 2 1/2 percent, Because (52) was obtained by use of
the same shear distribution as was used for turbulent flow, the
inference is that the non-dimensional shear distribution on a
flat plate is approximately the same for laminar as for turbulent
flow. Fediaevsky's method (ref. (4)) predicts them to be identical.

In contrast to the usual method in which the velocity pro-
files are calculated by patching the results of a number of
approaches, each yielding a portion of the velocity profile, the
present analysis calculates the entire velocity profile by one
approach, Moreover, the present method yields many of the
results that are presently accepted, For example, in the region
very close to the wall equation (14) applies. Here f; << 1 and

X &1, Then (14) becomes

Tw y+
¢ = [%T dy,

(s}
or

W= Yu (54)

This is the well-known velocity profile of the laminar sublayer
(ref. (1)).

From equations (1) and (2) it follows that the_ratio of the
turbulent shear, Pén “ , to the laminar shear,}L ;* , is %}

or y,t1. The value of Gnity for this ratio has often been sug-
gested as a criterion for the edge of the laminar sublayer. By
use of figure 3 it is found that this ratio is equal to unity
when y; is about 9.9, a value in the range of accepted values
for the vuter ecge of the laminar sublayer.

4

at
For somewhat larger values of y, the ratio %, is still
approximately equal to unity if Rey is sufficiently large.
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e P/w

W= '&(ﬁ) (55)

Equation (55) is the law of the wall (ref. (1)). 1Its upper
limit is either the upper limit for fj or for . % 1, whichever
value of y, is smaller. ©

Then (14) becomes

or

When Re, is large enough for a region of overlap to exist,
equation (12; is valid for a range of n whose upper limit is
near ,06 (see figure 2). Equation (15) then becomes

.52 n

T ¢ T d (56
‘i? =| 3% § dy. * - Reg | +KN Re, 1o )
+N Sa (-{_ﬁ :r\...oc)
For large enough Re the range in which Tx, 1is almost J;ity
extends from the wa{I to a value of =n greater than %%, . Thus,
at n = .06, which is greater than ¥/, when Res is lar“é‘e, % -
.992, Therefore, take L = 1 in (565 Then (56) hecomes”™

<[ d R,
i % ___ji_ - = es
* ‘) * o [ +Y4h) K?e;_ (V\ [H-K'L—E"f] N
or jﬂ*
d> — (57)
o o U 94 + L |, (I+Krz_’h’e+) e LA (1 452K)
2 (.rz <ns o‘)

The smallest value of (1 + K~Reg) is (1 + 52K). But ln (1 + 52K)
differs from 1ln 52K by less than one percent for K = ,393.
Consequently, (57) can be written as

—’% |3, 99 +—7 ‘h Kq’Re < L hsaK

or as

= 2.54lnq + 2.54 |2 Re, + 3. 8.9 P58)
£
%, =

u“+
Equation (58) is the logarithmic profile.
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Equation (58) was obtained by requiring that :E, * 1 and
that (12) both apply. Consequently, it would seem that the
profile should not be logarithmic for n $ ,06 or so; n = ,06 is
roughly the upper 1limit for (12). When, however, (9) is used
with figure 7 it 1is found that the velocity profiles do not
differ noticeably from the logarithmic profile unless n is much
larger than .06, For example, the values of n for departure from
the logarithmic profile vary from about ,17 for Reg = 2960 to
about ,20 for Reg = 5 x 105, For Regs equal to 200 there appears
to be very little, if any, logarithmic portiom in figure 7; the
lower values of Rey definitely bave none. The velocity profiles
thus have a logarithmic appearing portion for values of 71 larger
than a strict application of the requirements indicate. The
reason for this behavior is probably the slow decrease of Er
from Kn (see fig. 2) combined with the slow decrease of %, Unb’
from unity for n less than about .2 (see fig. 1). w

As the Reynolds number decreases, the value of =n;, which
for large Reynolds numbers is equal to 52 , increases, The

increase in n] decreases the range of n '%r which (12) is valid
and, as a result, decreases the extent of the logarithmic portion
of the velocity profile. If the upper limit of (12) is taken at
n= ,06 (see fig. 2), there will be no logarithmic portion of the
velocity profile when Rey, becomes less than 867. At this value
of Reg, m] exceeds .06, The value 867 for Res corresponds to a
value of 2000 for Repn. Note that the lower limit for thée loga-
rithmic velocity profile is also the lower limit for the loga-
rithmic friction formula, equation (50).

Although, strictly speaking, there is no logarithmic portion
of the velocity profile for Rey < 867, the discussion concerning
the extent of the logarithmic profile indicated that according
to figure 7 a velocity profile has a logarithmic appearing
portion down to Ref in the neighhorhood of 200, For Rer = 200,
Reg is about 450. Preston (ref. (9)) took the lower edge of the
logarithmic portion of the profile at y; = 30 and the upper edge
at n = ,20 gnd found that the extent of the logarithmic portion
shrank to zero at Reg = 150. From this value, Preston obtained
389 for the value of Reg below which there is no logarithmic
portion of the velocity profile. From figure 3 it seems that 30
is too small a value of b AN for the logarithmiec profile to hold.
Here again, bowever, the velocity profile departs slowly from
the logarithmic type (see also ref. (10)) so that it has the
logarithmic appearance for smaller values of y, than is to be
expected.

Beyond the logarithmic portion of the velocity profile lies
the region of the velocity defect formula (ref. (1)). To obtain
this formula from the present analysis, equation (15) is written
for n = 1, thus,
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T“hl ( T
T T
-:J".:_‘E —e s =~ d
=i [+Y, dYe + TRy | Teme o “1 (59)
(=] +'1 )h
When (15) is subtracted from (59), the result is
' T
— = _Ci? e
l ¢ = er b l+’Re4-_'p,.
(]
or l~~
I—¢ —_—
TE = Rep | Temegfs 1 (60)

Although =T, and fg are taken to be functions of n alone, the
indication from (60) is that'::’ depends on Rey as well as on =

unless Res is large. This result is illustrated by the profiles
for Reg = 25, 100, and 200 in figure 8,

For large Resy the quantity (1 + Resfs) is approximately
equal to Re;fz for all n > n} except at n = 1, where fgo = O,
0

Therefore, for large Rer (6 becomes {
& 5 *
| — — -, w
J-E:? -———-_{_.L ciq\ -+ ?n_!-_ J-&-’Re{,ﬁ a‘rL (61)
h |—&

As indicated by the discussion following equation (48), the last
term of (61) becomes negligible for large Rey. Consequently,
for large Ree (61) becomes

-6 _
Q’EE" 1(1 ('1>
or, in the usual form,
35%— ={,(n) (62)

Equation (61) is the velocity defect formula (ref. (1)). Its
derivation indicates it to be valid only for sufficiently large
Reynolds numbers., The indication from figure 8 is that (62) is
valid for the two largest values of Reg.
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The present analysis ylelds the velocity defect formula and
the law of the wall. Exnlicit expressions for two portinns of
the law of the wall, namely, the laminar sublayer and the loga-
rithmic portion are ohtained, Both the velocity defect and the
logarithmic formula require a sufficiently large Reynolds number
and, in addition, the logarithmic formula requires that L. be
almost unity. Tw

€
It 1s remarked that although C:} is the same function of y,

for both pipe and plate flow and ﬁﬁ? is the same function of n

for n less than about .2, the shesr ratio is rot. The shear
distribution in a pipe is

T = |-

T Yy

rather than the distribution shown in figure 1, Consequently,
the law of the wall, which was obtained by recguiring that %;
-

be almost unity, sbould not extend out as far from the wall for
pine flow as for plate flow (see p, 517 of ref, (1)). Moreover,
for most of the range of n for which the velocity defect law

holds, both %E% and %; are different for pipe then for plate flow.
w

€
Thus,If} in a pipe remains equal almost to its maximum value

out to large values of = instead of dropping to zero,
Consequently, the velocity defect formula should be different
for pipe than for plate flow (ref. (1)).

Heat-Transfer Coefficient and Temperature Profile

23e 237
The ratios T~ and cg are shown in figure 14. For equal

23t 237
Regp, the ratio 28 is larger than-tz- because-EF is an average

of 2% (see eq. (34)) and thus includes the larger values of 43t
that are present at low values of Res. Also shown in figure 14
is the line ___;_

25t — 2RST P

C_‘ CF
the commonly accepted ratio (p. 497, ref, (2)). The present
analysis results in a ratio or 23r that is larger than

Pr'z/3 at low Reynolds numbers and smaller at high Reynolds
numbers, The behavior at very large Reynolds numbers is obtained
from (31). For large Reynolds numbers (31) becomes

{ SJ'd Y / ‘::,
I —er_ 4 / ] dn
SeRegtr Keg A J il n’ te R LT (63)

Ry
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52
or, after taking-%u = 1 for n < .0l and f3 = Kn for = < n < .01,
equation (63) becomes

sa |
L [ f dn ">
St?p_s:ﬁ. ’-F?e_(_ l +.7’+1c| P,. Jsa ‘ +K’l?t&1?r _)I (4 zh ?q‘_" P-
°© Rey /5.88 ik

For Pr = ,738, calculations gave =
The last integral is equal to €f

? J’L"Z*?Ld“
.Ol L Gm

which, for large Re{ is equal to
n

for Pr = ,738. The
second integral is tegrated analyticaily. Equation (64) then
becomes

l = i [3 87 '*" lh(l+ OIK?°+?r)— IV\(H'S'M{{%
S Kes "Keg
or, for .0lK Re Pr >>» 1,

dn (60

for the first integral.

l [
1 = —=| 254 " Re, + 3 Oa (65)
< < ) + ’
v | & Fr=138)
When (50) is used forycr/z, the result is

23¢ _ 254 In Ky +6.3 ! (66)
< 2.5% |nRey + 3.04
For very large Reynolds numbers (66) becomes
<S¢
o =i (67)

The result that the ratio %%F approaches unity does not depend

on the value of K or of Pr. Because of the logarithm in the
numerator and denominator of (66), the ratio approaches unity
very slowly. For example, for Rey; = 1010, %%F = 1.053.

From equations (13) and (37) it follows that if é;LPr -1
for all n, then ~

t . RxP
% Cf
or, becau t =- = 1latn=1
ause $ a LSeF&
C“_ = |
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This also follows from (5) and (30). Therefore, the velocity

and temperature profiles are identical when €uh Pr = 1 for all n=.

Because %%‘depends on n this cannot be so, onsequently, even if
2 -, and Pr = 1 the velocity and temperature profiles are

not identical.

For laminar flow, it follows from ‘%; - %i 0 éﬁ'- 0, and
from (16) and (30) that
A .
C"F — P (68)
The correct result (ref. (2)) is that
e T Ly (69)

En
A comparison of equation (16) with equation (30) for = = O,
indicates that the cause of the error is the assumption that
- % - should depend on Pr. Thus, it can be shown

w w ’

from pages 120 and 313 of reference (2) that for laminar flat-

plate flow .
Y =
/?;,C{ xl}?“x .B32
o
and that n - ,
44 = "3
/ wd‘f Fex s (70)
[=]

The quantity Pr‘1/3 in (70) accounts for the difference between
(68) and (69). The inference is therefore that the effect.of
Pr on the ratio 25t in the present analysis is inexact, When

the Prandtl numbe;'is near unity the error is small. Thus, for
Pr = ,738, the error in (68) is about 12 percent.

Results similar to those obtained for the velocity profiles
follow for the temperature profiles. Thus, very close to the
wall, f] << 1 and ?;‘= 1. Equation (38) then becomes

Y
t=3F [y, = 3y, e

A B
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Define the quantity tx as
S«

Gw _
t, = — = T
i E Cplhs E3 (TeT) (see ret. (1) ,p. 823)
Equation (71) then becomes
t=T y+
where 4: T (72)
+ tw

This is8 the linear portion of the temperature profile very close
to the wall.

The turbulent shear is equal to the laminar shear where
y+f1 18 equal to unity., This occurs at about y, = 9.9, From
the denominator of the first integral of (38) 1t follows that
the turbulent heat-transfer is equal to the laminar where
y+f1Pr equals unity. For Pr < 1, the so-called edge of the
laminar temperature layer is lurger than the edge of the laminar
velocity layer. Thus, for Pr = ,738 the edge 0of the temperature
laminar sublayer is at about VY, = 11.4, a value slightly
larger than the value of about 9.9 for the velocity layer.

For y, too large for (72) but small enough for 'Q; to be
approximately equal to unity, (38) becomes

_ s®% T4y

r—ﬁ {%(jn1¢>

+:+f=-P} {;<\i+)F1)

Equation (73) is the law of the wall for the temperature pro-
file., Like the law of the wall for the velocity profile, its
upper limit is either the upper limit for f; or for-%_
whichever is smaller.

then

(73)

For the range of n for which (12) is wvalid, (38) can be
written as

(«ﬂ
R ‘?’ &
Y f T

e, L
e ({.‘q.. o6
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For large enough Ref,‘gi 1s almost unity up to values of n
large enough to include the upper limit for (12), which is at
about .06, Figure 12 indicates that for n between zero and
about .06, €~ is almost unity. Therefore, (74) can be written

so T
82 L
SePr| dYs + SR / ki — (75)
3 2 es- r >
ERE Joo |+ LT CEUERED

The first integral in (75) has the value 15.88 for Pr = ,738,
Equation (75) then becomes

n
+ = (1.7l St ~+ lh [(4—&\’1’?@_ (738]
E) F o
R
or
_T_—-t:w - H'—” +—llr-< lh[l_‘_l(yl?e{_C'lDB) "'—'R‘ \v\[:l+52K(~73&§]
F2en 5,06
or, with K = ,393 and Pr = ,738, (F‘* L )
+, = 254lnn + 258 |WRe; + (S0 (76)
+ 1 (’P‘ £q4,00)

Equation (76) is the logarithmic temperature profile.

A temperature defect formula can be obtained by writing
(38) for n = 1, thus |

| = 2T - dy, +3ReB ’i—_ Mern)
Rep ) T+ A RO TR T reh 2R
o Na

When (38) is subtracted from (77), the result is

% dn

{ —t = St??r?r-

|+ Ry 2P
1 I
or <i_wtyi%£ —T P jr '4;3 . ‘Aﬂ~
Sg Reg ¢ 1‘l*:ph;EL?£:P;
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or, after using the definitions of t, t«, and Rer,
|
T =T <4
SLC el q2€¥'F; w -
™

-T
The indication from (78) is that;%gr’depends on Rey and Pr as
well as on n, For large Ref, however, (78) becomes
- \ _q.
Te-T :i; w A

2 6m .

A'l (78)

where (l—A) is the upper limit of the range of n in which
1& @1 Pr is much larger than unity. For very large Rey, the

last term’ln (79) becomes negligible and (79) becomes
—ﬁa-:r
-ﬁ,o ('L) (R0)

Equation (80) is a temperature defect profile, The velocity
defect profile (eq. (62)) requires only a sufficiently large
Ref._, In addition to this requirement, (80) requires that

and 3% both depend on n alone, Because'%; is known to dep;hd
on Pr and because £h probably also does (see p. 552, ref. (1)),

equation (80) should more properly be written as
Te—T B
__-g;—-—_—{:u (0, Pr) (81)

Mass=-Transfer Coefficient and Concentration Profile

The case treated corresponds to a turbulent boundary layer
composed of two species flowing over a plate on which one of the
specles, say S3, 1s condensing or evaporating. The c¢oncentration
of S1 is supposed to be so small that the velocity at the wall
caused by the evaporation or condensation of S; is not large
enough to make the concentration profile differ from the shear
or heat~transfer profile for v, = 0, If Cj is the concentration
of the evaporating or condensing species, vy is given by

- o C
v, = — —‘—_EE—YA ( p.3o! res. )

Vw - s | (E)Cl )
Ue Res  Ead PO 2N Jw

30
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All the results obtained for the temperature profiles and
heat-transfer coefficlients can be converted to the same results
for the concentration profiles and mass—transfer coefficients by
making the substitutions

54— b
t —g
Pr---Sc
€h—€d
q—= m)
k —=pD
T—Cy
Té—~C1e
Tﬁ‘.clw
St-—-Cm
and Cp—1
teaEx
- C
where Z4 = -fr’l“lf - _@%(C'C“C'Q
CONCLUDING REMARKS

It has been shown that the friction coefficient for a con-
stant property, zero pressure gradient, turbulent boundary layer
can be calculated over the entire range of Reynolds numbevrs hy
one method, The method is to use the relation between the local
shear, the local sum of the moleculsr and eddy viscosity, snd
the local velocity gradient., The eddy viscosity across the
boundary layer is obtained by joining a distribution for the
wall region to one for the outer region., The same procedure
yields the velocity profile from the wall to the outer edge of
the boundary layer without using the concept of laminar sublayer,
transition region, logarithmic region, etc,

The heat and mass-transfer coefficient and the temperature
and concentration profile are calculated by a similar method.
More approximations, however, are used than to calculate the
friction coefficient and velocity profile., Therefore, these
results are probably not as accurate as those for the velocity

31
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boundary layer. For example, although the calculated friction
coefficlent, C¢/2, agrees closely with accepted values,
ratio 23t

differs slightly from the accepted value, Pr-Epg,
decreaégg

and
with increasing Reynolds number.
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TABLE 1

Limit of Wall Region and Associated Eddy Kinematic Viscosity
Reynolds Number For Three Friction Reynolds Rumbers

B €m €m
°r usxy J 1 y+'1 u*é 1 "

25 .127 12,2 0615 .487
100 .253 26,6 0672 . 266
200 318 37.6 ,0598 »188
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TABLE II

Friction Coefficient and Boundary Layer Reynolds Number
for Six Friction Reynolds Rumbers

| Ref Cf/2 Reé
25 .0116 2.32 x 102
100 ‘ .00378 1.62 x 103
200 .00280 3.78 x 103
2,960 .00143 7.81 x 104
22,400 .000987 7.13 x 105
500,000 .000633 1.99 x 107
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TABLE IV
o 3" 5
Computed Values of =, , and 7g-
Yor Six Friction He';'nol 8 Numbers
[} 5" ™ -3
Reys F — S Rey x 10
25 +119 «269 2,25 0277
100 .118 «211 1.79 <191
200 «117 .189 1.61 444
2,960 .102 .138 1.35 7.98
22,400 .0922 .119 1.29 65.7

500,000 0791 .0954 1.21 1571.




NOLTR 63-77

TABLE V

Limit of Wall Region and Associated Eddy Thermal
usivity Reynolds Number Tor Three friction

Reynolds Numbers

€ € €h

R —h_ m \—bh

ef (u‘y Y+,2 “UxXGM
25 .140 13.2 .0736
100 .266 28.4 .0750
39.0 .0639

200 .328

N2

.528
284
.195
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TABLE VI

Local Stanton Number, Ratio of Stanton Number to Friction
CoeIlicient, and Boundary-Layer Momentum Thickness
Reynolds Number for Six Friction Reynolds Numbers

Res St 25¢ Rep x 1073
Ce
25 .0148 1.28 .0277
200 .00339 1.21 <444
2,960 .00164 1.14 7.98
22,400 .00110 1.12 65.7

500,000 .00069 1.09 1571.
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